RANCANGAN DETEKTOR GEMPA BERPOTENSI TSUNAMI DENGAN SISTEM MAGNETIC ALTITUDE BERBASIS WIRELESS SENSOR NETWORK (ANALISA TERHADAP TINGGI RENDAH GELOMBANG LAUT) DI PESISIR PANTAI KABUPATEN BULELENG
Keywords:
tsunami, detector, sensor, magnetic altitude, BulelengAbstract
Deteksi dini terhadap bahaya bencana alam gempa bumi sangatlah penting diupayakan. Salah satu efek gempa bumi yang terjadi di sekitar pesisir pantai adalah Tsunami. Tujuan penelitian ini adalah mendeskripsikan rancangan prototype detektor gempa berpotensi Tsunami dengan sistem Magnetic Altitude berbasis WSN, menganalisis hasil pembacaan sensor Magnetic Altitude dan sensor tinggi gelombang laut serta korelasi keduanya sebagai indikator peringatan tsunami, menguji kinerja sistem WSN dalam hal jangkauan dan keandalan transmisi data di lingkungan pesisir Buleleng. Penelitian ini adalah jenis penelitian eksperimen, yang dilakukan di pesisir Kabupaten Buleleng pada tahun 2025. Hasil pembacaan gempa bumi dari detektor dengan sistem sensor yang dirancang, menggunakan jaringan sensor network yang disimulasikan oleh shaking table, dengan hasil pencatatannya menggunakan skala shindo. Perancangan sistem detektor ini direalisasikan melalui integrasi tiga subsistem utama: Unit Akuisisi Data Geomagnetik (Magnetic Altitude), Jaringan Sensor Nirkabel (WSN), dan Unit Analisis Tinggi Gelombang Laut. Hasil yang diperoleh menunjukkan sistem detektor gempa berpotensi tsunami menggunakan prinsip Magnetic Altitude terbukti efektif dalam mendeteksi perubahan tinggi-rendah permukaan air laut. Pengujian menunjukkan bahwa sensor magnetik dapat mengukur variasi ketinggian gelombang laut yang signifikan dalam range yang ditentukan, yang merupakan indikasi utama dari potensi gelombang tsunami. Sistem ini memiliki potensi besar untuk diterapkan sebagai komponen kunci dalam sistem peringatan dini tsunami lokal di pesisir pantai Kabupaten Buleleng, mengingat karakteristik geografis wilayah yang rawan bencana
References
Abbasi, A. A., Buragohain, C., & Ranka, S. (2007). Energy-efficient algorithms for data
aggregation in wireless sensor networks: A survey. ACM Computing Surveys (CSUR),
(3), 9
.
Aida, I. (1978). Reliability of a tsunami warning system in terms of coastal effects. Journal of Physics of the Earth, 26(1), 127–146.
Akyildiz, I. F., Su, W., Sankarasubramanian, Y., & Cayici, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.
Anggraheni, L. I., Muktamar, R. A., & Yustian, A. (2020). A review of real-time tsunami early warning systems using seismic and GPS data integration. IOP Conference Series: Earth and Environmental Science, 584(1), 012022.
Ariastuti, N. M. W., Heryana, I. G. A., & Budiarsa, I. W. (2021). Analisis kerentanan wilayah pesisir Kabupaten Buleleng terhadap bencana tsunami. Jurnal Ilmiah Pendidikan dan Pembelajaran, 5(2), 269–277.
Bernard, E. N., Gica, E., & Chamberlin, C. D. (2018). The US national tsunami warning system: Science, technology, and policy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2118), 20170417.
Cirella, A., Piatanesi, A., Cencetti, A., Frasca, S., & Ghergo, S. (2017). GNSS buoy system for tsunami early warning and mitigation. Sensors, 17(10), 2216.
Dargie, P., & De Waal, A. (2017). Fundamentals of wireless sensor networks: Theory and practice. John Wiley & Sons.
Di Capua, G., Del Gaudio, V., & Sacchi, M. (2023). Machine learning for tsunami early warning: A review of recent advances and future perspectives. Remote Sensing, 15(4), 1121.
Disanto, E., Convertito, V., & Zollo, A. (2021). Real-time tsunami warning based on an integrated source duration and magnitude estimator. Geophysical Journal International, 226(3), 1957–1968.
Fraser-Smith, A. C. (1999). Low-frequency magnetic field measurements near the Loma Prieta earthquake epicenter. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(9), 859–863.
Freund, F. T., Culotta, M. R., & Teculescu, D. (2006). Flow of positive charges precedes and accompanies earthquakes: Evidence from satellite and ground observations. Physics and Chemistry of the Earth, Parts A/B/C, 31(7), 517–523.
González, F. I., Bernard, E. N., Able, M. C., Mofjeld, H. O., Percival, D. B., Spillane, M. W., & Titov, V. V. (2005). The Deep-Ocean Assessment and Reporting of Tsunami (DART) Program. Pure and Applied Geophysics, 162(2-3), 517–551.
Han, H., Liu, W., Xu, Z., & Gao, D. (2020). Design of a multi-parameter monitoring system for earthquake precursors based on wireless sensor networks. IEEE Access, 8, 114675–114686.
Hao, H., Li, M., Wang, J., Yang, T., & Wang, Q. (2020). Research progress on seismo-electromagnetic anomalies in China. Earthquake Science, 33(5), 450–467.
Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.
Kanamori, H., & Rivera, L. (2017). Rapid determination of tsunami potential based on earthquake parameters. Pure and Applied Geophysics, 174(11), 3843–3856.
Kim, J. M., Oh, H. Y., & Lee, D. H. (2016). Design and implementation of a high-density magnetometer array system for seismic geomagnetic anomaly detection. Sensors, 16(11), 1835.
Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., & Yue, H. (2012). The 2011 Great Tohoku-Oki earthquake and its aftershocks. Earthquake Spectra, 28(S1), S1–S32.
Li, S., Da, Q., & Zhang, W. (2018). Applications of wireless sensor networks in natural disaster monitoring and early warning: A review. International Journal of Distributed Sensor Networks, 14(1), 1–13.
Melgar, D., Bock, Y., & Riquelme, S. (2013). Rapid estimation of rupture extent and tsunami potential from high-rate GPS and accelerometer data. Geophysical Research Letters, 40(23), 6046–6050.
Merrill, R. T., McFadden, P. L., & McFadden, P. (1998). The magnetic field of the earth: Paleomagnetism, the core, and the deep mantle. Academic Press.
Munger, S. B., Eblé, M. C., & Chamberlin, C. (2007). Real-time tsunami warning utilizing a Kalman filter approach to tide gauge data analysis. Science of Tsunami Hazards, 26(1), 1–18.
Nagao, T., Hattori, K., Hirata, Y., & Kamogawa, M. (2011). Review of seismo-electromagnetic phenomena. Physics and Chemistry of the Earth, Parts A/B/C, 36(16), 1632–1648.
Omira, R., Babour, M., Gutscher, M. A., & M. S. (2016). Tsunami genesis: An overview of the key controls and challenges in tsunami science. Natural Hazards and Earth System Sciences, 16(11), 2419–2438.
Pararas-Carayannis, G. (2018). The tsunami handbook: Historical events, scientific foundations, and mitigation strategies. Springer International Publishing.
Prasetya, G. S., Harjono, H., & Supartono. (2021). Tinjauan bahaya tsunami di pantai utara Bali berdasarkan karakteristik sesar naik busur belakang Flores. Jurnal Sumber Daya Air, 17(1), 1–12.
Putra, I. N. S., Wija, I. B. S., & Dantes, K. R. (2019). Simulasi perambatan gelombang tsunami akibat aktivitas sesar naik di utara Bali dan implikasinya terhadap waktu evakuasi. Jurnal Lingkungan dan Bencana Geologi, 10(3), 167–176.
Rabinovich, A. B., Thomson, R. E., & Fine, I. V. (2013). A review of tsunami detection and early warning capabilities in the North Pacific. Pure and Applied Geophysics, 170(12), 2697–2730.
Santoso, T., & Arjit Hai, I. W. E. (2022). Identifikasi zona bahaya tsunami dan jalur evakuasi di Kecamatan Gerokgak, Kabupaten Buleleng. Jurnal Ilmu Kebencanaan, 6(1), 45–56.
Stacey, F. D., & Johnston, M. J. S. (1994). Earthquake prediction, seismology, and the Earth's interior. Blackwell Scientific Publications.
Synolakis, C. E., Bernard, E. N., Titov, V. V., Kânoğlu, U., & Thio, H. K. (2008). Tsunami forecast and mitigation: The last half-century and the next. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1871), 2139–2156.
Titov, V. V., González, F. I., & Chamberlin, C. D. (2005). Advanced tsunami forecasting: From DART to numerical modeling. EOS, Transactions American Geophysical Union, 86(46), 464.
Tsioulou, A., Tsompanas, M. A., & Kanistras, I. (2014). Wireless sensor networks for earthquake early warning systems: A review. Journal of Applied Sciences, 14(12), 2419–2431.
Widiyantoro, S., Gunawan, E., Harjono, H., & Supartono. (2020). Revisiting historical earthquakes and tsunami hazard in the Northern Bali Region, Indonesia. Tectonophysics, 794, 228639.
Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.
Yue, H., Lay, T., & Kanamori, H. (2014). The role of earthquake size in real-time tsunami warning. Geophysical Research Letters, 41(4), 1145–1152.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Putu Artawan, Iwan Suswandi, Dewi Oktova Rachmawati (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.





